Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Journal of Southern Medical University ; (12): 171-180, 2022.
Article in Chinese | WPRIM | ID: wpr-936299

ABSTRACT

OBJECTIVE@#To study the therapeutic mechanism of Longqi Fang (LQF) for diabetic kidney disease (DKD) based on GEO database and network pharmacology.@*METHODS@#LQF and DKD targets were obtained using the databases including GEO, TCMSP, CNKI, ChemDraw, and SwissTarget Prediction, and LQF-DKD intersection targets were obtained with VENNY. String was used for protein-protein interaction (PPI) analysis, and R package for KEGG and GO enrichment analysis. Cytoscape 3.7.2 software Network graphs were constructed. The results of network pharmacology analysis were verified in SD rat models of DKD by daily treatment of the rats with LQF at low (1 g/kg), medium (2 g/kg), and high (2 g/kg) doses, and kidney pathology was observed with HE staining and the changes in renal function were assessed. Western blotting was used to detect the expression levels of NF-κB and p-NF-κB proteins.@*RESULTS@#We identified 760 main targets of LQF, and obtained 1026 differential genes using GEO database and 61 LQF-DKD intersection targets using Venny database. The core targets obtained through PPI network analysis included Myc, EGF, CASP3, VEGFA, CCL2, SPP1, VCAM1 and ICAM1. Go analysis showed that LQF affects mainly nuclear receptor activity and ligand activated transcription factor activity. KEGG analysis showed that LQF affects inflammatory signaling pathways by interfering with NF-κB, TNF, and PI3K-AKT. In rat models of DKD, treatment with LQF resulted in significant improvements of the renal functions (P < 0.05) and glomerular and tubular structure and arrangement in a dose-dependent manner. Western blotting results showed that LQF dose-dependently downregulated NF-κB and p-NF-κB expressions in the rat models.@*CONCLUSION@#The therapeutic mechanism of LQF for DKD involves multiple components, targets and signal pathways that mediate an inhibitory effect on NF-κB signaling pathway to protect the renal function.


Subject(s)
Animals , Rats , Diabetes Mellitus , Diabetic Nephropathies/metabolism , Network Pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Interaction Maps , Rats, Sprague-Dawley
2.
Rev. Assoc. Med. Bras. (1992) ; 66(supl.1): s17-s24, 2020. tab, graf
Article in English | LILACS | ID: biblio-1057108

ABSTRACT

SUMMARY Type 2 diabetes mellitus is an important public health problem, with a significant impact on cardiovascular morbidity and mortality and an important risk factor for chronic kidney disease. Various hypoglycemic therapies have proved to be beneficial to clinical outcomes, while others have failed to provide an improvement in cardiovascular and renal failure, only reducing blood glucose levels. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, represented by the empagliflozin, dapagliflozin, and canagliflozin, have been showing satisfactory and strong results in several clinical trials, especially regarding the reduction of cardiovascular mortality, reduction of hospitalization due to heart failure, reduction of albuminuria, and long-term maintenance of the glomerular filtration rate. The benefit from SGLT2 inhibitors stems from its main mechanism of action, which occurs in the proximal tubule of the nephron, causing glycosuria, and a consequent increase in natriuresis. This leads to increased sodium intake by the juxtaglomerular apparatus, activating the tubule glomerular-feedback and, finally, reducing intraglomerular hypertension, a frequent physiopathological condition in kidney disease caused by diabetes. In addition, this class of medication presents an appropriate safety profile, and its most frequently reported complication is an increase in the incidence of genital infections. Thus, these hypoglycemic agents gained space in practical recommendations for the management of type 2 diabetes mellitus and should be part of the initial therapeutic approach to provide, in addition to glycemic control, cardiovascular outcomes, and the renoprotection in the long term.


Subject(s)
Humans , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Kidney Diseases/prevention & control , Benzhydryl Compounds/therapeutic use , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Sodium-Glucose Transporter 2/therapeutic use , Canagliflozin/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Glomerular Filtration Rate , Glucose/metabolism , Glucosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Kidney/drug effects , Kidney/physiopathology , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolism
3.
Braz. j. med. biol. res ; 53(4): e9288, 2020. graf
Article in English | LILACS | ID: biblio-1089349

ABSTRACT

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.


Subject(s)
Humans , Diabetic Nephropathies/metabolism , Bone Morphogenetic Protein 7/metabolism , Epithelial-Mesenchymal Transition/physiology , RNA, Long Noncoding/physiology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Down-Regulation , Up-Regulation , Cells, Cultured , MicroRNAs/metabolism , Diabetic Nephropathies/genetics , Real-Time Polymerase Chain Reaction
4.
Acta cir. bras ; 34(1): e20190010000007, 2019. tab, graf
Article in English | LILACS | ID: biblio-983684

ABSTRACT

Abstract Purpose: To investigate the impact of Ramipril (RAM) on the expressions of insulin-like growth factor-1 (IGF-1) and renal mesangial matrix (RMM) in rats with diabetic nephropathy (DN). Methods: The Sprague Dawley rats were divided into normal control (NC) group (n = 12), DN group (n = 11), and DN+RAM group (n = 12). The ratio of renal weight to body weight (RBT), fasting blood glucose (FBG), HbA1c, 24-h urine protein (TPU), blood urea nitrogen (BUN), creatinine (Cr), renal pathological changes, the levels of IGF-1, fibronectin (FN), type IV collagen (Col-IV), and matrix metalloproteinases (MMP)-2 were compared among the groups. Results: Compared with NC group, the RBT, FBG, HbA1c, TPU, BUN, Cr, and RMM in DN group were significantly increased (P < 0.05), the IGF-1, FN, and Col-IV were significantly upregulated (P < 0.05), while MMP was significantly downregulated (P < 0.05). Compared with DN group, the indexes except for the FBG and HbA1c in DN+RAM group were significantly improved (P < 0.05), among which IGF-1 exhibited significant positive correlation with TPU(r=0.937), FN(r=0.896) and Col-IV(r=0.871), while significant negative correlation with MMP-2 (r=-0.826) (P<0.05). Conclusion: RAM may protect the kidneys by suppressing IGF-1 and mitigating the accumulation of RMM.


Subject(s)
Animals , Male , Rats , Insulin-Like Growth Factor I/antagonists & inhibitors , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Ramipril/pharmacology , Diabetic Nephropathies/drug therapy , Mesangial Cells/drug effects , Insulin-Like Growth Factor I/metabolism , Immunohistochemistry , Fibronectins/drug effects , Fibronectins/metabolism , Rats, Sprague-Dawley , Matrix Metalloproteinases/drug effects , Matrix Metalloproteinases/metabolism , Collagen Type IV/adverse effects , Collagen Type IV/metabolism , Diabetic Nephropathies/metabolism , Mesangial Cells/metabolism
5.
Biol. Res ; 50: 9, 2017. tab, graf
Article in English | LILACS | ID: biblio-838964

ABSTRACT

BACKGROUND: A number of dysregulated miRNAs have been identified and are proposed to have significant roles in the pathogenesis of type 2 diabetes mellitus or renal pathology. Alpinia oxyphylla has shown significant anti-inflammatory properties and play an anti-diabetes role. The objective of this study was to detect the alteration of miRNAs underlying the anti-diabetes effects of A. oxyphylla extract (AOE) in a type II diabetic animal model (C57BIKsj db-/db-). RESULTS: Treatment with AOE for 8 weeks led to lower concentrations of blood glucose, urine albumin, and urine creatinine. 17 and 13 miRNAs were statistically identified as differentially regulated in the DB/DB and db-/db- AOE mice, respectively, compared to the untreated db-/db- mice. Of these, 7 miRNAs were identified in both comparison groups, and these 7 miRNAs were verified by quantitative real-time PCR. Functional bioinformatics showed that the putative target genes of 7 miRNAs were associated with several diabetes effects and signaling pathways. CONCLUSIONS: These founding suggest that the potential of AOE as a medicinal anti-diabetes treatment through changes in the expressions of specific miRNAs. The results provide a useful resource for future investigation of the role of AOE-regulated miRNAs in diabetes mellitus.


Subject(s)
Animals , Male , Mice , Plant Extracts/pharmacology , MicroRNAs/drug effects , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Kidney/drug effects , Time Factors , Blood Glucose/analysis , Gene Expression Regulation , Reproducibility of Results , Treatment Outcome , Sequence Analysis, RNA , Creatinine/blood , MicroRNAs/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Albuminuria , Real-Time Polymerase Chain Reaction , Kidney/metabolism , Mice, Inbred C57BL
6.
Arch. endocrinol. metab. (Online) ; 60(5): 443-449, Oct. 2016. tab, graf
Article in English | LILACS | ID: lil-798174

ABSTRACT

ABSTRACT Objective The objective of this study was to evaluate the role of oxidative stress in an experimental model of streptozotocin-induced diabetic nephropathy in rats. Materials and methods Wistar, adult, male rats were used in the study. Animals were divided in the following groups: Citrate (control, citrate buffer 0.01M, pH 4.2 was administrated intravenously - i.v - in the caudal vein), Uninephrectomy+Citrate (left uninephrectomy-20 days before the study), DM (streptozotocin, 65 mg/kg, i.v, on the 20th day of the study), Uninephrectomy+DM. Physiological parameters (water and food intake, body weight, blood glucose, kidney weight, and relative kidney weight); renal function (creatinine clearance), urine albumin (immunodiffusion method); oxidative metabolites (urinary peroxides, thiobarbituric acid reactive substances, and thiols in renal tissue), and kidney histology were evaluated. Results Polyphagia, polydipsia, hyperglycemia, and reduced body weight were observed in diabetic rats. Renal function was reduced in diabetic groups (creatinine clearance, p < 0.05). Uninephrectomy potentiated urine albumin and increased kidney weight and relative kidney weight in diabetic animals (p < 0.05). Urinary peroxides and thiobarbituric acid reactive substances were increased, and the reduction in thiol levels demonstrated endogenous substrate consumption in diabetic groups (p < 0.05). The histological analysis revealed moderate lesions of diabetic nephropathy. Conclusion This study confirms lipid peroxidation and intense consumption of the antioxidant defense system in diabetic rats. The association of hyperglycemia and uninephrectomy resulted in additional renal injury, demonstrating that the model is adequate for the study of diabetic nephropathy.


Subject(s)
Animals , Male , Oxidative Stress/physiology , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Peroxides/urine , Blood Glucose/analysis , Body Weight/physiology , Lipid Peroxidation/physiology , Rats, Wistar , Streptozocin , Creatinine/analysis , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/chemically induced , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/pathology , Albuminuria/urine , Disease Models, Animal , Glomerular Filtration Rate/physiology , Kidney/metabolism , Kidney/pathology
8.
Acta cir. bras ; 31(3): 150-155, Mar. 2016. graf
Article in English | LILACS | ID: lil-777091

ABSTRACT

ABSTRACT PURPOSE : To investigate in the kidney the pathologic changes and expression of GRP78 and CHOP in the Kunming (KM) mice with combination of high-fat diet and streptozotocin-induced diabetes. METHODS : Sixty two male KM mice were randomly divided into a normal control (NC) group (n=20) and a high-fat diet (HFD) group (n=42). After a four-week dietary manipulation, the KM mice in the HFD group were injected intraperitoneally with streptozotocin to induce diabetes. After diabetic models were successfully established, the kidneys were excised and conserved for further test. RESULTS : No significant difference in the body weight was observed after the dietary manipulation (p=0.554). After the streptozotocin was injected, fasting blood glucose levels in the diabetes group (DM) were significantly higher than that in the NC group (p<0.0001). Glomerular atrophy observed under light microscope in the DM group was more serious compared with the NC group. The expression of GRP78 and CHOP in the kidneys of the mice in the DM group were higher compared with the NC group. CONCLUSION : Renal lesion occurs in the diabetic Kunming mice induced by combination of high-fat diet and low-dose streptozotocin, and endoplasmic reticulum stress and CHOP may contribute to the injury process.


Subject(s)
Animals , Male , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endoplasmic Reticulum Stress/physiology , Diet, High-Fat , Blood Glucose/analysis , Body Weight/physiology , Random Allocation , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Transcription Factor CHOP/metabolism , Unfolded Protein Response/physiology , Heat-Shock Proteins/metabolism , Kidney/metabolism , Kidney/pathology
9.
Clinics ; 71(1): 47-53, Jan. 2016. tab
Article in English | LILACS | ID: lil-771950

ABSTRACT

The purpose of this study was to evaluate the therapeutic options for diabetes treatment and their potential side effects, in addition to analyzing the risks and benefits of tight glycemic control in patients with diabetic kidney disease. For this review, a search was performed using several pre-defined keyword combinations and their equivalents: “diabetes kidney disease” and “renal failure” in combination with “diabetes treatment” and “oral antidiabetic drugs” or “oral hypoglycemic agents.” The search was performed in PubMed, Endocrine Abstracts and the Cochrane Library from January 1980 up to January 2015. Diabetes treatment in patients with diabetic kidney disease is challenging, in part because of progression of renal failure-related changes in insulin signaling, glucose transport and metabolism, favoring both hyperglycemic peaks and hypoglycemia. Additionally, the decline in renal function impairs the clearance and metabolism of antidiabetic agents and insulin, frequently requiring reassessment of prescriptions. The management of hyperglycemia in patients with diabetic kidney disease is even more difficult, requiring adjustment of antidiabetic agents and insulin doses. The health team responsible for the follow-up of these patients should be vigilant and prepared to make such changes; however, unfortunately, there are few guidelines addressing the nuances of the management of this specific population.


Subject(s)
Humans , Blood Glucose/drug effects , /drug therapy , Diabetic Nephropathies/drug therapy , Hypoglycemic Agents/therapeutic use , Renal Insufficiency, Chronic/drug therapy , Blood Glucose/metabolism , Creatinine/metabolism , Disease Progression , /complications , /metabolism , Diabetic Nephropathies/metabolism , Glomerular Filtration Rate/drug effects , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/metabolism , Patient Compliance , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism
10.
Indian J Biochem Biophys ; 2010 Apr; 47(2): 100-103
Article in English | IMSEAR | ID: sea-135251

ABSTRACT

Association of diabetic nephropathy (DN) with the deletion of GSTT1 and GSTM1 genes is well reported. Oxidative stress (OS) has also been associated with the development of DN. The present study was conducted to find out, whether these deletions had any contributory role in the development of OS in patients with DN. Pre-dialysis venous blood samples were obtained from 60 patients with diabetic end-stage renal disease (stages 4 and 5). Reduced-glutathione (GSH), glutathione S-transferase (GST) activity and malondialdehyde (MDA) levels were measured for the assessment of OS. Genetic polymorphism analysis of DN patients revealed the following distribution pattern: GSTM1 null 46.7%; GSTT1 null 55%; both null 30% and both positive 28.3%. Patients with both null genotypes were found to have significantly increased levels of MDA and low GST activity as compared to other genotypic groups. Lower GSH levels were observed in all the genotypic groups as compared to both positives. Double deletions involving GSTT1 and GSTM1 may result in decreased GST levels, leading to increased OS as reflected by increased MDA levels. As GST is a multi-functional enzyme involved in xenobiotic metabolism, this double null genotype population has a greater risk of development of DN. Further studies using increased sample size to find out the allelic distribution and their role in the development of DN are in progress.


Subject(s)
Diabetic Nephropathies/blood , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Electrophoresis, Agar Gel , Female , Gene Deletion , Genotype , Glutathione Transferase/deficiency , Glutathione Transferase/genetics , Humans , Male , Middle Aged , Oxidative Stress/genetics , Polymorphism, Genetic
11.
Zanco Journal of Medical Sciences. 2010; 14 (2): 68-75
in English | IMEMR | ID: emr-110264

ABSTRACT

Patients with chronic renal failure and diabetic nephropathy reveals biochemical changes .this study aim to investigate the differences of some important biochemical changes in these two groups of patients in comparison with normal controls. [80] patients were selected with different renal disease complications. A control group of [30] healthy,18 males and 12 females were included in this study. Patients were divided into two groups the first group with chronic renal failure, include [40] patients, [25] male and [15] female; the second group with diabetic - nephropathy, include [40] patients, [25] male, and [15] female. Determination of the biochemical compound level as creatinine, urea, uric acid, total protein [T.P], albumin, total cholesterol [TC], triglyceride [TG], low density lipo-protein [LDH-C], high density lipoprotein [HDL-c], and LDL-c/HDL-c ratio. Patients with chronic renal failure showed increasing levels of [creatinine, urea, - uric acid] in their serum, and lower levels of [total protein, albumin]. Mild increase in levels of [TC, LDL-c], while great increased level of triglyceride were recorded, also a great decline in the level of HDL-c was found, which indicate a high risk factor and moderate increase in [LDL-c/HDL-c] ratio .patients with diabetic nephropathy showed slight increase in the levels of [creatinine, urea, uric acid], however still lower than that in chronic renal failure group. Also they showed decreased levels of [total protein, albumin], but still lower than in chronic renal failure and increased level of [TC,TG, LDL-C, LDL-C/HDL-C] which were greater than the increase in chronic renal failure .also decrease in the level of HDL-c, but still less than that in chronic renal failure. Patients with chronic renal failure or with diabetic nephropathy showed significant increase in the levels of creatinine, urea, and uric acid; and decreased levels of albumin and total protein. Both group of patients showed variation in their cholesterol, LDLc, triglyceride, and LDL/HDL-c ratio


Subject(s)
Humans , Male , Female , Diabetic Nephropathies/metabolism , Lipids , Kidney Failure, Chronic/blood , Case-Control Studies
12.
Journal of Korean Medical Science ; : 837-843, 2009.
Article in English | WPRIM | ID: wpr-223650

ABSTRACT

An early feature of diabetic nephropathy is the alteration of the glomerular basement membrane (GBM), which may result in microalbuminuria, subsequent macroproteinuria, and eventual chronic renal failure. Although type IV collagen is the main component of thickened GBM in diabetic nephropathy, cellular metabolism of each alpha chains of type IV collagen has not been well studied. To investigate the regulation of alpha(IV) chains in diabetic conditions, we examined whether glucose and advanced glycosylation endproduct (AGE) regulate the metabolism of each alpha(IV) chains in the diabetic tissue and glomerular epithelial cells (GEpC). Glomerular collagen alpha3(IV) and alpha5(IV) chains protein were higher and more intense in immunofluorescence staining according to diabetic durations compared to controls. In vitro, mainly high glucose and partly AGE usually increased total collagen protein of GEpC by [3H]-proline incorporation assay and each alpha(IV) chain proteins including alpha1(IV), alpha3(IV), and alpha5(IV) in time-dependent and subchain-specific manners. However, the changes of each alpha(IV) chains mRNA expression was not well correlated to the those of each chain proteins. The present findings suggest that the metabolism of individual alpha(IV) chains of GBM is differentially regulated in diabetic conditions and those changes might be induced not only by transcriptional level but also by post-translational modifications.


Subject(s)
Animals , Male , Rats , Cells, Cultured , Collagen Type IV/genetics , Diabetic Nephropathies/metabolism , Epithelial Cells/metabolism , Glomerular Basement Membrane/metabolism , Glucose/metabolism , /metabolism , Podocytes/metabolism , RNA, Messenger/metabolism , Rats, Sprague-Dawley
13.
Arq. bras. endocrinol. metab ; 51(6): 901-912, ago. 2007. ilus
Article in Portuguese | LILACS | ID: lil-464281

ABSTRACT

O principal determinante da nefropatia diabética é a hiperglicemia, mas hipertensão e fatores genéticos também estão envolvidos. O glomérulo é o foco de lesão, onde proliferação celular mesangial e produção excessiva de matriz extracelular decorrem do aumento da glicose intracelular, por excesso de glicose extracelular e hiperexpressão de GLUT1. Seguem-se aumento do fluxo pela via dos polióis, estresse oxidativo intracelular, produção intracelular aumentada de produtos avançados da glicação não enzimática (AGEs), ativação da via da PKC, aumento da atividade da via das hexosaminas e ativação de TGF-beta1. Altas concentrações de glicose também aumentam angiotensina II (AII) nas células mesangiais por aumento intracelular da atividade da renina (ações intrácrinas, mediando efeitos proliferativos e inflamatórios diretamente). Portanto, glicose e AII exercem efeitos proliferativos celulares e de matriz extracelular nas células mesangiais, utilizando vias de transdução de sinais semelhantes, que levam a aumento de TGF-beta1. Nesse estudo são revisadas as vias que sinalizam os efeitos da glicose e AII nas células mesangiais em causar os eventos-chaves relacionados à gênese da glomerulopatia diabética. As alterações das vias de sinalização implicadas na glomerulopatia, aqui revisadas, suportam dados de estudos observacionais/ensaios clínicos, onde controle metabólico e anti-hipertensivo, especificamente com inibidores do sistema renina-angiotensina, têm-se mostrado importantes - e aditivos - na prevenção do início e progressão da nefropatia. Novas estratégias terapêuticas dirigidas aos eventos intracelulares descritos deverão futuramente promover benefício adicional.


The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.


Subject(s)
Humans , Diabetic Nephropathies/etiology , Glomerular Mesangium , Hyperglycemia/complications , Angiotensin II/metabolism , Cell Proliferation/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Endothelium-Dependent Relaxing Factors/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Glomerular Mesangium/metabolism , Glomerular Mesangium/pathology , Glomerular Mesangium/physiopathology , Glucose Transporter Type 1/metabolism , /metabolism , Hyperglycemia/metabolism , Hyperglycemia/physiopathology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Renin-Angiotensin System/drug effects , Sclerosis/metabolism , Sclerosis/physiopathology , Transforming Growth Factor beta1/metabolism , Vasoconstrictor Agents/metabolism
14.
Journal of Korean Medical Science ; : 245-252, 2004.
Article in English | WPRIM | ID: wpr-67698

ABSTRACT

The presence of heparan sulfate proteoglycan (HSPG) in anionic sites in the lamina rara interna of glomerular basement membrane suggests that the proteoglycan may be deposited by the glomerular endothelial cells (GEndo). We have previously demonstrated that bovine GEndo in vitro synthesize perlecan, a species of glomerular basement membrane HSPG. In this study we examined whether high glucose medium regulates the GEndo metabolism of glycopeptides including perlecan. Metabolic labeling of glycoconjugates with 35S-SO4, sequential ion exchange and Sepharose CL-4B chromatography of labeled glycoconjugates, and northern analysis were performed. Incubation of GEndo for 8 to 14 weeks (but not for 1-2 weeks) in medium containing 30 mM glucose resulted in nearly 50% reduction in the synthesis of cell layer and medium 35SO4-labeled low anionic glycoproteins and proteoglycans, including that of basement membrane HSPG (Kav 0.42) compared to GEndo grown in 5 mM glucose medium; no changes in anionic charge density or hydrodynamic size of proteoglycans were noted. Northern analysis demonstrated that the mRNA abundance of perlecan was reduced by 47% in cells incubated with 30 mM glucose. Our data suggest that high glucose medium reduces the GEndo synthesis of perlecan by regulating its gene expression. Reduced synthesis of perlecan by GEndo may contribute to proteinuria seen in diabetic nephropathy.


Subject(s)
Animals , Cattle , Basement Membrane/drug effects , Cells, Cultured , Diabetic Nephropathies/metabolism , Endothelial Cells/cytology , Gene Expression/drug effects , Glucose/pharmacology , Heparan Sulfate Proteoglycans/genetics , Kidney Glomerulus/cytology , Sulfur Radioisotopes
15.
Rev. bras. ativ. fís. saúde ; 6(3): 43-49, 2001. ilus, graf
Article in Portuguese | LILACS | ID: lil-314666

ABSTRACT

O diabetes mellitus é uma doença crônica caracterizada por alteraçöes bioquímicas relacionadas a deficiência de insulina. A atividade física realizada regularmente promove benéficas adaptaçöes estruturais e funcionais nos organismos diabéticos. O trabalho investigou possíveis alteraçöes glicêmicas e renais em ratos diabéticos sedentários e treinados. Os ratos foram distribuídos nos seguintes grupos: controle sedentário, controle treinado, diabético sedentário, diabético treinado. O programa de exerc1cio consistiu em nataçäo: 60 min/dia, 5 d/semana, 6 semanas. Ao final do período experimental os ratos foram sacrificados e retiradas amostras de sangue para análise de glicemia, insulina, albuminas e proteínas totais e retirados os rins para análises histológicas. Os cortes foram corados com (HE). A ANOVA mostrou elevaçäo na glicemia e reduçäo da insulina nos diabéticos. Näo foram encontradas diferenças significativas para proteínas totais e albumina. A análise histológica mostrou que os corpúsculos renais foram semelhantes entre os grupos CS e CT, mas apresentaram-se aumentados principalmente entre os DS. Portanto, o treinamento físico foi efetivo em reduzir os níveis glicêmicos, bem como, em melhorar os aspectos morfológicos renais dos diabéticos.(au)


Subject(s)
Animals , Rats , Diabetes Mellitus , Kidney , Diabetic Nephropathies/complications , Diabetic Nephropathies/metabolism , Exercise Therapy/adverse effects
16.
Braz. j. med. biol. res ; 32(12): 1525-8, Dec. 1999. graf
Article in English | LILACS | ID: lil-249378

ABSTRACT

Diabetic nephropathy (DN) is characterized structurally by progressive mesangial deposition of extracellular matrix (ECM). Transforming growth factor-ß (TGF-ß) is considered to be one of the major cytokines involved in the regulation of ECM synthesis and degradation. Several studies suggest that an increase in urinary TGF-ß levels may reflect an enhanced production of this polypeptide by the kidney cells. We evaluated TGF-ß in occasional urine samples from 14 normal individuals and 23 patients with type 2 diabetes (13 with persistent proteinuria >500 mg/24 h, DN, 6 with microalbuminuria, DMMA, and 4 with normal urinary albumin excretion, DMN) by enzyme immunoassay. An increase in the rate of urinary TGF-ß excretion (pg/mg UCreat.) was observed in patients with DN (296.07 + or - 330.77) (P<0.001) compared to normal individuals (17.04 + or - 18.56) (Kruskal-Wallis nonparametric analysis of variance); however, this increase was not observed in patients with DMMA (25.13 + or - 11.30) or in DMN (18.16 + or - 11.82). There was a positive correlation between the rate of urinary TGF-ß excretion and proteinuria (r = 0.70, a = 0.05) (Pearson's analysis), one of the parameters of disease progression.


Subject(s)
Humans , Adult , Middle Aged , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/urine , Extracellular Matrix , Proteinuria , Transforming Growth Factor beta/physiology
17.
The Korean Journal of Internal Medicine ; : 77-84, 1999.
Article in English | WPRIM | ID: wpr-125509

ABSTRACT

OBJECTIVES: The thickening of the glomerular basement membrane in rats after Vacor ingestion was examined by electron microscopy. This study was performed to elucidate which biochemical components changed in the glomerular basement membrane after Vacor-induced diabetic glomerulopathy. METHODS: Immunohistochemical analyses of type IV collagen, laminin, fibronectin and chondroitin sulfate proteoglycan were performed. A single dose of Vacor (molecular weight 272), 80 mg/kg, was administered to adult male Wistar rats by orogastric canule, and the animals were sacrificed at 0.5, 1, 3, 7, 14, 28 and 56 days after administration. RESULTS: Mild thickening of the glomerular basement membrane was evident 7 days after Vacor administration, and the width of the glomerular basement membrane was more than twice that of normal controls at 28 and 56 days. Significantly increased expressions of type IV collagen, laminin, fibronectin and neutral polysaccharide in the thickened glomerular basement membrane were noted 14 to 56 days after administration, and a mildly increased expression of chondroitin sulfate proteoglycan appeared between 3 to 7 days. CONCLUSION: These abnormally increased glomerular basement membrane components might be part of what causes diabetic nephropathy after Vacor administration.


Subject(s)
Male , Rats , Animals , Basement Membrane/pathology , Basement Membrane/metabolism , Basement Membrane/drug effects , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/chemically induced , Extracellular Matrix Proteins/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/drug effects , Phenylurea Compounds/toxicity , Chondroitin Sulfate Proteoglycans/metabolism , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL